
Noname manuscript No.
(will be inserted by the editor)

High-quality tree structures modelling using local convolution
surface approximation

Xiaoqiang Zhu · Xiaogang Jin · Lihua You

Received: date / Accepted: date

Abstract In this paper, we propose a local convolution
surface approximation approach for quickly modelling

tree structures with pleasing visual effect. Using our

proposed local convolution surface approximation, we

present a tree modelling scheme to create the structure

of a tree with a single high-quality quad-only mesh.
Through combining the strengths of the convolution

surfaces, subdivision surfaces and GPU, our tree mod-

elling approach achieves high efficiency and good mesh

quality. With our method, we first extract the line
skeletons of given tree models by contracting the meshes

with the Laplace operator. Then we approximate the

original tree mesh with a convolution surface based

on the extracted skeletons. Next, we tessellate the tree

trunks represented by convolution surfaces into quad-
only subdivision surfaces with good edge flow along

the skeletal directions. We implement the most time-

consuming subdivision and convolution approximation

on the GPU with CUDA, and demonstrate applications
of our proposed approach in branch editing and tree

composition.

Xiaoqiang Zhu
State Key Lab of CAD&CG, Zhejiang University, Hangzhou
310058, P.R. China
E-mail: zhuxiaoqiang@zjucadcg.cn

Xiaogang Jin
State Key Lab of CAD&CG, Zhejiang University, Hangzhou
310058, P.R. China
Tel.: +86-571-88206681 ext 507
Fax: +86-571-88206680
E-mail: jin@cad.zju.edu.cn

Lihua You
E-mail: LYou@bournemouth.ac.uk
National Center for Computer Animation, Bournemouth
University, Bournemouth, UK

Keywords Tree modelling · Convolution surfaces ·
CUDA · Subdivision surfaces · Quadrilateral meshes

1 Introduction

Trees are ubiquitous natural objects. Their modelling is

an essential element in virtual environments. This raises
the problem of how to model and edit various trees con-

veniently, realistically, and quickly. Tree models can be

reconstructed from real trees using laser scanners [57,

31] or computer vision techniques [52,51]. As trees

exhibit a large amount of self-similarity, more new tree
models can be produced by making full use of acquired

tree models. A challenging problem is how to find a

new compact representation of tree models with smooth

branch ramification so that modelling and editing new
trees from existing ones can be performed easily and

interactively. Such a modelling tool is also required

to simulate plant pruning and grafting, which are

important in virtual agriculture to avoid the physical

process.

A tree branch usually has a cylinder-like appear-

ance, and it can be abstracted as line segments. More-
over, trees have smooth branches. Based on these

observations, in this paper, we propose a convolution

surface-based tree representation for efficient skeleton-

based tree modelling and editing. Our goal is to develop

an interactive skeleton-driven tree modelling approach
that can provide easy and high level editing using the

skeleton-based local convolution surface approximation

and compact quad-only mesh representation. With

the method, users can manipulate low-dimensional
skeletons to create new trees, and smooth branches are

automatically achieved during the editing process. In

addition, it can output compact quad-only meshes with

2 Xiaoqiang Zhu et al.

good edge flows by making use of the fact that the area

of cylinder-like branches occupies a large portion of the

whole tree trunk.

We note that smooth branch ramification is not

considered in most of previous approaches [57,31,52,

51]. Although implicit surfaces, especially convolu-

tion surfaces, can be introduced to create smooth
branching structures [9,21,25], the Marching cubes

polygonizations of the iso-surface they employed suffers

from high computation complexity, limited resolution,

and low-quality triangle meshes. Furthermore, it is
prone to missing small twigs for complex tree models

because the output of the Marching cubes is resolution-

dependent. Even though there are a large number of

improvements [55,8,10,1,40,59], it is still difficult to

balance the quality of the iso-surface polygons and the
performance. To solve these problems, we propose an

interactive GPU-based quad-only tessellation method

to polygonize convolution surfaces with good edge flows

along the skeletons of tree models.

Our paper has the following technical contributions:

(1) a novel GPU-based local approximation method to
represent a given tree model with convolution surfaces,

(2) an interactive tree modelling system which com-

bines the strengths of the skeleton-based composition,

convolution surfaces and GPU to achieve excellent per-

formance in tree modelling with high-quality meshes.

The remainder of the paper is organized as follows.
After introducing the related work in Sect. 2, the

generation of the mesh topology and the fitting schemes

are presented in Sect. 3 and Sect. 4 respectively. Then

the implementation details are presented in Sect. 5

followed by some applications in Sect. 6, and our paper
ends with the conclusion section.

2 Related work

Besides trees modelling techniques, our work also in-

volves subdivision surfaces and skeleton-based convolu-

tion modelling. In this section, we review the relevant
research work.

Modelling trees Tree modelling can be classified into

two categories: designing virtual trees [16,38,39] and

reconstructing real trees [31,57]. The grammar-based
procedural modelling [16], sketch-based modelling [39]

and most of the image-based modelling approaches [38]

fall into the first category. Early L-systems [30] generate

trees from a given initial state, and the recent grammar-
based tree modelling [50] designs an algorithm to

control the process at a higher level. Although technical

users are capable of modelling many excellent distinct

trees, rules are too abstract for novice users. Therefore,

interactive sketch-based interfaces have been developed

to generate 3D trees from sketched 2D shapes [15,

39,41,54,33] during the past decades. The TreeSketch

system [33] is a popular sketch-based iPad app. for pro-
ducing trees interactively. Another important approach

for modelling virtual trees is image-based modelling.

Reche-Martinez et al. [44] propose a purely image-

based modelling method. The approach proposed in [38]
combines image-based with sketch-based modelling to

produce 3D tree models from several images. User inter-

actions are also allowed in image-based tree modelling

presented by Tan el al. [51,52]. With the development

of scanning technology, reconstructing real trees from
laser point clouds has been developed recently. The tree

skeletons are extracted from point sets and then leaves

are randomly added to the branches in [57]. Bucksch et

al. [11] partition points into clusters before connecting
adjacent clusters to generate the skeletons. Pirk et

al. [43] simulate the natural growth of trees and interac-

tion with their environment. The component-based tree

synthesis is discussed and mesh fusion is adopted in [36],

it works on 3D meshes directly, and the connections
between different parts are allowed for branches with

predefined similar contours in 3D meshes. In [32], Lluch

et al. propose a new scheme for producing a single

polygonal mesh by refining the junctions. Lin et al. [29]
create branching shapes by fusing disconnected mesh

components. Galbraith et al. [19] present an implicit

surface-based tree modeling which can simulate bud

scale scars and branch bark ridges, and the ray-tracing

method and the polygonization are both used to render
the result models.

Subdivision surfaces Some of commonly used subdivi-

sion surfaces such as Catmull-Clark [14], Loop [34],
Doo-Sabin [17] and

√
3 [28] subdivisions have been

integrated in the CGAL (Computational Geometry

Algorithm Library [18]) and OpenMesh [48], and ex-

ecuted on CPU. Recently, more and more research

activities contribute to GPU implementation [12,35,
56] because of GPU’s programmability and massive

computational capability. With the recent emergence of

CUDA (Compute Unified Device Architecture), many

researchers have used it to design parallel subdivision
algorithms [42,46]. The subdivision scheme with CUDA

adopted in this paper is based on the parallel Catmull-

Clark subdivision proposed in [42].

Skeleton-based convolution modelling As natural ab-
stracts of shapes, skeletons capture the essential topol-

ogy of an object in a very compact form, and they can

be easily edited [60]. A convolution surface is defined as

High-quality tree structures modelling using local convolution surface approximation 3

an iso-surface in a scalar field by convolving a geomet-

ric skeleton with a kernel function [9,37]. Analytical

solutions are the best way to reduce the considerable

calculation for the convolution integrals [22,25–27,37,

47,60,23]. Since convolution surfaces offer a number of
advantages such as smoothness, fluidly varying topol-

ogy, local control, well behaved blends, and simple

implementation, they have numerous applications in

design, modelling and animation. One interesting ap-
plication is to model sketch-based models [4,3,2,7,49,

60] which uses the advantages of the rotundity and

smoothness of convolution surfaces. Another impor-

tant application of convolution surfaces is to simulate

deformable surfaces with complex topology, and the
imbedded skeletons make it especially suitable for

skeleton-based animation or special effects. Due to the

advantages of skeletal abstraction and varying topology,

skeleton-based convolution surfaces have also been used
to model tree branches [37] and organic shapes [9]

conveniently.

Convolution fitting is an important process in con-

volution surface-based 3D modelling. Some fitting tech-

niques have been successfully developed in [4,3,2,7].
By using a new bounded function, a fitting technique

is proposed in [4] which combines the initial surface

approximation with a minimization adjustment proce-

dure to achieve optimal fitting, better smoothness, and

less oscillation. The technique presented in [2,3] uses
a polynomial function to automatically assign weights

of convolution surfaces and avoid any adjustments

afterwards. The polynomial function is determined by

best interpolating all the values found during manually
fitting the weights for a large number of cases. This

technique has the benefits of a good approximate fit of

the user drawn contour and a smooth non-oscillating

surface. In order to avoid the optimisation operation

required in a fitting process, the fitting technique
described in [7] determines the convolution weights with

a third power of the scaled radius and the iso-surface

of the field function by averaging the field values at

the points located on the contour. For tree modelling,
the radius variation between neighboring nodes is small

which guarantees tiny oscillations. Therefore, we will

not address this issue in this paper. Since efficiency is

one of the important factors in tree modelling which

involves many skeletons, we will present an efficient
local approximation fitting technique in this paper.

Such a technique avoids time-consuming solution of the

constrained least-squares problem and selection of con-

straint positions required in the global approximation,
and has the benefit of naturally stitching tree branches

together. Therefore, it is especially suitable for the tree

structure modelling given in this paper.

3 Generation of quad-only mesh topology

3.1 Skeleton-based bounding polyhedron

Our work begins with an existing tree model, which

can be created with modelling tools or reconstructed

from real data. Then the line skeletons are extracted

using the same approach as in [59], where an implicit
Laplacian smoothing operator is involved [6,13]. Be-

sides the extracted skeletons, a useful by-product of

induced skeleton-mapping is generated. That is, for

each skeleton node Nk, the mapping set of vertices
∏

k

on the original mesh are contracted and collapsed to
Nk. The mapping set of vertices at each node forms a

cylinder-like shape (non-branching node) or a sphere-

like shape (branching node). For each mapping set
∏

k,

we calculate its approximate thickness rk by averaging
the distances between Nk and its mapping vertices in
∏

k (Fig. 1). As skeleton nodes with too high density

hinder the performance, we resample the skeletons by

deleting unnecessary nodes. To do this, we discard

the non-branching node Nk if 6 Nk−1NkNk+1 < ε or
min (|Nk−1Nk|, |NkNk+1|) < crk, where both ε and c

are user-specified parameters.

(a) (b) (c)

Fig. 1 An input acer japonicum model (a), its induced
skeleton-mapping (b) and the thickness of each mapping set
(c)

After that, the bounding polyhedron is created

based on the skeletons on CPU, which consists of
mainly quadrilaterals and a few triangles (Fig. 2). The

details can be found in Sect. 4.2 of [24]. The created

polyhedrons are used as a control mesh for the following

subdivision.

3.2 Parallel quad-only surface subdivision

Quadrilateral meshes are more preferable for artists

because of their natural characteristics. Once the graph-

based tree skeleton has been created, the approach
adopted in [24] is employed to create a polyhedron

which serves as a control mesh (Fig. 2). Each facet

of the initial control mesh has three or four edges. A

4 Xiaoqiang Zhu et al.

Fig. 2 The created bounding polyhedron of the tree
skeletons

quad-only mesh is generated after one or more levels

of the Catmull-Clark subdivisions below. Our method

has advantages over the previous iso-surface extraction
methods such as Marching cubes, which usually miss

small features like thin twigs and extract triangles with

low quality.

(a) (b)

Fig. 3 Topological information in the mesh structure (a) and
Catmull-Clark subdivision scheme (b)

Given a control meshM0, a new mesh M1 consisting

of a collection of quadrilaterals is produced by applying

the Catmull-Clark subdivision schemes to M0. With
the repetition of such a scheme, M1 is recursively

subdivided into M2, then M3, and so on. The Catmull-

Clark subdivision process has been implemented with

the half edge structure on CPU, and even integrated
into mesh libraries such as OpenMesh, and CGAL. For

GPU implementation, collaborated design is essential.

Patney et al. [42] present a data structure (Fig. 3 (a))

for Catmull-Clark subdivision surfaces with CUDA on

GPU. For each subdivision step, three types of new
vertices are calculated to form the subdivision surfaces

(Fig. 3(b)). Therefore, three relevant CUDA functions

are designed to calculate them in parallel respectively:

• Facet point fp = 1
n

n
∑

i=0

vi, where vi is the ith vertex

of the current facet and n is the vertex count of the

facet. In this step, one thread is dispatched for each

(a) (b)

Fig. 4 The results of the created bounding polyhedron
shown by the right image of Fig. 2 after the 1st subdivision
(a) and the 2nd subdivision (b), respectively

facet to evaluate the centroid of its four corners. After

that, the dispatched thread also adds the calculated

face point coordinates to the corner vertices of the facet
for updating the vertex points.

• Edge point ep = 1
4

{

1
∑

i=0

vi +
1
∑

i=0

f i
p

}

, where vi and

f i
p are the ith vertex and the ith adjoining face of
the current edge. The relevant CUDA kernel function

distributes a thread for each edge to calculate the edge

point by averaging four vertices: the two vertices of the

current edge, and the two face points of the adjoin-

ing facets. Similar to the above-mentioned updates of
vertex points, the current thread will perform an extra

task, adding twice the coordinates of the edge points to

its two vertices.

• Vertex point vp =
(

n−2
n

)

v + 1
n2

n−1
∑

i=0

vi + 1
n2

n−1
∑

i=0

f i
p,

where v and n are the original vertex and its valence

(the number of neighbouring vertices), and the same

definition of vi and f i
p as above is applied here.

During the GPU implementation, as the face points

and the edge midpoints have already been aggregated

into the adjacent vertex points, the following equation

is used to evaluate the updated vertex point: vp ⇐
vin×(n−3)+

vout

n

n
, where vout contains the already aggre-

gated face points and twice the midpoints of adjoining

edges, and vin is the old coordinates of the vertex.

As described in [42], here we also maintain two

copies of vertices, edges and faces information in order
to produce new data from the old copies, and swap

the pointers to the old and the new copies after each

subdivision. With this update scheme, a smooth and

shrunk mesh is generated after several steps. The final
result is mapped to VBs (vertex buffers) through the

CUDA-OpenGL interoperability, so it can be rendered

with a single GPU call (Fig. 4).

High-quality tree structures modelling using local convolution surface approximation 5

(a)

(b)

Fig. 5 (a) The overlapped results of the original mesh
(orange) and the naive subdivision (blue). (b) The overlapped
results of the original mesh (orange) and the locally
approximated result with Cauchy kernel (blue)

(a) (b) (c)

Fig. 6 The sparsely sampled skeleton nodes give rise to large
facets of a control mesh (a) and too flat ramifications after
naive subdivisions (b), but the convolution approximation
can create rounded ramifications (c)

4 Fitting with convolution surfaces

The superposition and smooth blending properties of

convolution surfaces make it extremely suitable for

modelling tree-like shapes. Although the excellent mesh

topology after the subdivision can be produced, the
newly generated vertices are not on the skeleton-

based convolution surfaces due to the above-mentioned

shrinkage (Fig. 5 (a)). In addition, the vertices at

ramifications are seriously dependent on the control
vertices (Fig. 6 (b)), which can be solved through the

superposition of convolution surfaces (Fig. 6 (c)). In or-

der to address this issue, we perform an evolution on the

subdivision surfaces to make them better approximate

the target convolution surfaces (Fig. 5 (b)).

The result of the above-described subdivision is a

topology of quad-only mesh which will be approximated

to form an excellent shape. The target limit surface is

defined as a convolution surface based on the embedded
line skeletons.

4.1 Convolution approximation

The convolution surface S based on a series of skeletons

can be defined in the general form below:

S =

{

p|
n
∑

i=1

λiFi (p)− T = 0

}

, (1)

where Fi and λi are the field function and the field

contribution weight of the ith skeleton segment respec-

tively, and T represents the threshold value of the iso-
surface.

Previously, convolution approximations at given
constraint positions {p1, ..., pm} are commonly per-

formed by solving a constrained least-squares problem

below for Λ = [λ1, ..., λn]
⊤
[49]:

min
Λ≥0

(FΛ−T)
⊤
(FΛ−T) , (2)

Such convolution approximations have two problems.

First, the iterative method or NNLS (Non-Negative

Least Square) used to solve the constrained least-

squares problem is rather time-consuming especially
when there are too many skeleton segments and con-

straint points. Second, special care must be taken

to choose the constraint positions. Despite this, the

resulting global approximations are still not satisfactory

especially at branch nodes as shown in Fig. 7.

4.2 Analytical solutions for local approximation

In order to address the above issues, we present a local

approximation solution here, which is especially more

suitable for our modelling tree purpose because it has

the following advantages:

• Since the local approximation instead of the global
one is used, no least-squares problem is involved.

Therefore, our local approximation is more efficient.

• Tree branches are naturally stitched because of

the superposition property of convolution surfaces,
which guarantees the smooth blending, and avoids the

operation of positioning constraint points at branches

used in the global approximation.

6 Xiaoqiang Zhu et al.

(a) (b) (c)

Fig. 7 The close-ups of the chosen 1548 constraint positions ((a), red points) for the global approximation ((b), 520 skeletal
segments). The image in (c) illustrates our local approximation with Cauchy kernel

Skeli

di

p

Kernel

Fig. 8 The sketch of the local fitting

The basic idea of our local approximation is to

treat each skeleton segment as a line with infinite

length (Dashed lines in Fig. 8 are imaginary skele-

ton segments), and determine the weight of its field
contribution by both the iso-value and the distance

between the current segment and the original mesh. For

a skeleton segment Skeli with the radii ra and rb at its

two ends, a point p at di =
ra+rb

2 distance from Skeli
(Fig. 8) needs to be fitted. Therefore, the weight of
Skeli can be determined as:

FCauchy (p) = 2λi

∫∞

0
1

(1+s2(x2+d2

i
))2

dx = T

⇒ λi =
2
π
sT

(

1 + s2d2i
)

3

2

(3)

FQuartic (p) = 2λi

∫

√
R2

i
−d2

i

0

(

1− d2

i
+x2

R2

i

)2

dx = T

⇒ λi =
15TR4

i

16(R2

i
−d2

i)
5

2

(4)

where Ri is the effective radius of the kernel for the

current skeleton segment which is empirically set to 2di
in practice, and λi is the final weight of the skeleton

segment.
The solutions for these two kernels are both based

on the assumption that the kernel functions are in-

finitesimal beyond some distance, which can be satisfied

(a)

(b)

Fig. 9 The results after the 2nd subdivision and the fitting
with two different kernels: Cauchy kernel (a) and quartic
kernel (b)

by choosing a suitable control parameter s for the

Cauchy kernel and effective radius R for the quartic

polynomial kernel. The excellent results from the above-
described kernels are obtained and illustrated in Fig. 9.

Observing the images given in the figure, we find an

impressive similarity between the results obtained from

the two different kernels. The small radius variation
between neighboring nodes guarantees tiny oscillations

of the final convolution surfaces. Due to the effective

local support, the quartic kernel consumes less time

High-quality tree structures modelling using local convolution surface approximation 7

(about 1.5 times faster in our experiments). In order

to meet different user preferences, both kernels are

incorporated in our system. For the sake of conciseness,

we take the Cauchy kernel as an example in this paper

if no specification is involved.

4.3 Surface evolution

The approximation is obtained by moving the vertices

of subdivided surfaces to the convolution surfaces in
the gradient directions that continuously change in the

whole 3D domain, and the standard Newton iteration

can be performed to project the vertex onto the convo-

lution surface [53]:

vi ← vi + σ (F (vi)− iso)
∇F (vi)

‖∇F (vi)‖2
, (5)

where σ = 0.95 is an effective value for our application.
In the parallel evolving implementation, one thread

is dispatched for each vertex. In our experiments, an

average of 5 to 7 evolving steps for each vertex is

sufficient for all the examples in this paper.

4.4 Error reduction

There are errors in our approximate process, which can

be seen in Fig. 10 (a). In order to intuitively visualize

the approximate errors, we map it to a colour space,
where positive errors mean that the approximated

vertices fall outside of the original mesh, and vice

versa. In order to further reduce the approximate errors,

our system presents an optional off-line function to
restore the offsets which are defined as the vectors

from the approximated vertices to the original mesh

in the normal directions. The resulting model after

restoring the offsets is shown in Fig. 10(b) which clearly

demonstrates a significant reduction of the approximate
errors.

(a) (b)

Fig. 10 (a) The approximate errors. (b) The errors after
restoring the offsets

5 Results and discussions

Our system is tested on a PC equipped with Intel
Q9550 CPU @2.83GHz with 4GB of memory, and the

GPU of Nvidia GeForce GTX 280 with an 1GB of

dedicated memory. The most time-consuming subdivi-

sion and convolution approximation are both performed

on GPU. At each subdivision, the surface data of the
previous subdivision is stored in graphics memory as

textures, which can accelerate the memory access due

to the cache mechanism. Another cache mechanism of

CUDA is for constant memory, which is used to store
the numbers of vertices, edges and faces for efficient

access of each thread. As the numbers of vertices and

faces at each subdivision can be pre-computed, the

allocations of graphics memory are all carried out only

once.

(a)

(b)

Fig. 11 The produced polygonal iso-surface with improved
Marching tetrahedra (a) and our scheme (b). All the results
are based on the local approximation with Cauchy kernel

In order to extract the iso-surface of the tree

trunk-based convolution surface, the improved March-

ing tetrahedra [59] (Fig. 11(a)) produces triangles

efficiently, which has better visual effects and achieves
higher performance than the traditional Marching tetra-

hedra. Compared to the improved Marching tetrahe-

dra, the subdivision scheme adopted in this paper

8 Xiaoqiang Zhu et al.

Table 1 Improved Marching tetrahedra. Abbreviations: (AJ) Acer japonicum, Skels (Skeletons), Tets (Tetrahedrons),
TetVerts (Tetrahedral Vertices), IsoTris (Iso-surface Triangles), Plyh (Polyhedron Generation), Tetz (Tetrahedralization),
TetSub (Tetrahedron Subdivision), FieldCalc (Field Calculation), IsoExtr (Iso-surface Extraction)

Model Skels Tets TetVerts IsoTris
Time(s)

Plyh Tetz TetSub FieldCalc IsoExtr Total
AJ 288 1,180,160 1,010,845 388,951 0.015 0.063 0.065 0.344 0.011 0.498

Ulmus 290 1,102,336 944,239 369,690 0.014 0.062 0.068 0.316 0.01 0.47
Quercus 129 464,384 397,792 161,540 0.008 0.032 0.042 0.07 0.005 0.157

Table 2 Our method. Abbreviations: (AJ) Acer japonicum,
Skels (Skeletons), IsoQuads (Iso-surface Quadrilaterals), Plyh
(Polyhedron Generation), SurfSubd (Surface Subdivision),
Appr (Approximation)

Model Skels IsoQuads
Time(s)

Plyh SurfSubd Appr Total
AJ 288 17,088 0.015 0.016 0.142 0.173

Ulmus 290 17,160 0.014 0.018 0.154 0.186
Quercus 129 7,704 0.008 0.013 0.031 0.052

Table 3 Time of solving field weights of skeleton segments
using local/global approximation

Approximation Figures Constraint Points Time (s)
Local Fig. 7(c) / 0.006

Global

Fig. 7(b) 1,548 2.038
Fig. 12(a)-(b) 1,548 2.025
Fig. 12(c)-(d) 532 1.105
Fig. 12(e)-(f) 4,999 5.183
Fig. 12(g)-(h) 5,516 6.002

makes sure that all the quadrilaterals are uniformly

distributed all over the whole tree (Fig. 11(b)) and

produces far fewer polygons for the same rendering
quality.

Moreover, our subdivision scheme is more efficient.

This is because the expensive calculation of field values
for a convolution surface usually becomes a bottleneck

in the whole process, and the number of positions in

Marching tetrahedra for field calculation is tens of times

larger than that of our approach. Even though our field
calculation at each vertex is performed several times

during the approximation stage, the computational

cost is still small (Time\Appr in Table 2) compared

with the Marching tetrahedra (Time\FieldCalc in Ta-

ble 1). In addition, our method is free from the
locality problem [5,20] over the traditional iso-surface

extraction approaches since the potential field values of

the vertices in our quadrilateral mesh can be calculated

using nearby skeletons according to the structural
relationship between the initial control mesh and the

skeletal segments. The more advanced technique deal-

ing with the locality problem has been successfully

developed in [5].

Compared to the global approximation, our local

approximation is free of serious bugles (Fig. 7). If

the global approximation is employed, the constraint

points have to be carefully selected, as the global

approximation is extremely dependent on both the

number of constraint points and their distribution.
Worse results will occur when the selected constraint

points are non-uniformly distributed all over the tree

(Fig. 12(a)-(b)) or too few constraint points are selected

(Fig. 12(c)-(d)). In our experiment, even though all
the vertices of the original mesh are taken as con-

straints and they are uniformly distributed, a rugged

surface can still be obviously seen (Fig. 12(e)-(f)).

Both additional auxiliary points and a post-smoothness

have to be involved to produce a more pleasing result
(Fig. 12(g)-(h)). In contrast, our local approximation

is independent of constraint points, the only essential

information is the radius of each skeletal node that can

be easy to obtain, and further smoothed by simply
averaging the radii of the neighboring nodes of the

current node. On the other hand, to solve the weight

of each skeleton segment (Table 3), the adopted NNLS

in global approximation has to solve an unconstrained

least squares problem in every iteration. Therefore,
with the constraints increasing (Constraint Points in

Table 3), more and more time will be spent on solving

the NNLS system. In comparison, the local approxima-

tion does not suffer from this problem, as the weight
of each skeleton segment is calculated separately using

a pre-defined analytical formula. Another advantage

is the locality. That is to say, only the weights of

the current parts are to be recomputed and updated

when a new branch is added or deleted. For the global
approximation, adding or deleting a new branch will

result in a completely new NNLS system which has to

be solved to determine all the weights.

When a branch has too many child branches as

illustrated in Fig. 13, our method will however result
in large errors because the original mesh at the branch

is too dissimilar to a cylinder-like shape. In spite of this,

our method still produces more natural surfaces than

the global approximation.

If we use the B-Mesh method [24] to model tree
trunks, many metaballs have to be employed to gener-

ate a smooth surface for a long straight branch. With

our method, only one line segment is sufficient. Due to

High-quality tree structures modelling using local convolution surface approximation 9

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12 The close-ups of the global approximation using
different numbers of constraint points. (a)-(b): the same
number(1,548) of constraint points as used in Fig. 7, but
here they are non-uniformly distributed across the entire tree
model. (c)-(d): The uniformly selected 552 constraint points
and the approximate result. (e)-(f): All the 4,999 vertices of
the original mesh are adopted. (g)-(h): All the 4,999 vertices
of the original mesh and additional 517 auxiliary mid-edge
points (green points) are adopted, then the result weight is
post-processed by averaging adjacent weights of each skeleton

this reason, our algorithm is far more efficient than the

B-Mesh approach. Comparing the GPU implementa-
tion of our algorithm with the CPU implementation

of the B-Mesh approach, our method is more than

fifteen times faster for all the examples presented in this

(a) (b)

(c) (d)

Fig. 13 An example with too many child branches produces
large errors. (a) The original mesh; (b) the extracted skeleton
and its thickness information; (c) the globally approximated
results; (d) the locally approximated results

paper. In comparison with the GPU implementation of

the B-Mesh approach, the GPU implementation of our
algorithm is still about two times faster (the speedup is

2.10 for Acer japonicum, 3.49 for Ulmus, and 4.07 for

Quercus).

Although our scheme is derived from the B-Mesh [24],

two great improvements have been achieved to make
our scheme more suitable for modelling tree models.

The first improvement is the adoption of line skeleton-

based convolution surfaces rather than point skeleton-

based metaball surfaces. Such a treatment solves the

following problems of adopting point-based metaball
surfaces: a) determining how many metaballs should be

placed between each pair of skeleton nodes is avoided

since only a line skeleton for convolution surfaces is

used in our scheme, b) when metaball surfaces are used
to approximate the tree models, bulges will occur if

insufficient metaballs are provided or the metaballs are

not placed elaborately, especially at branching nodes.

10 Xiaoqiang Zhu et al.

Although the bulges can be reduced to some extent

when sufficient metaballs are provided, too many meta-

balls will result in a heavy computational burden in

the approximation step. By contrast, our line skeleton-

based convolution surfaces have no bulge artifacts. The
second improvement is the parallel computing of the

Catmull-Clark subdivision and convolution approxima-

tion, which are the most computation-intensive. With

our parallel computing implementation, an interactive
performance is achieved, even when many skeleton

segments (500 skeleton segments in our experiment) of

tree models are involved.

To further demonstrate the robustness of our ap-
proach, we present trees with large radius differences in

Fig. 14.

(a)

(b)

Fig. 14 Trees with large differences of radii. (a) A tree
generated with an L-System; (b) a tree composed with our
system

6 Applications

In this section, we demonstrate the effectiveness of our

method for branch editing and tree composition.

6.1 Branch editing

As an excellent abstract of trees, the line skeleton

can be interactively split, rotated, translated and ap-

pended. The surface model is updated correspondingly

and naturally. A similar interface is borrowed from
the MeshMixer system [45]. With our approach, it is

convenient to make a manifold surface from separated

overlapped branches (Figs. 15-16). In Fig. 17, we give

three different frames to demonstrate good mesh qual-

ity during editing animation of creating tree structure

models.

Fig. 15 The detaching and merging procedure

(a) (b)

Fig. 16 The original mesh with superimposed branches (a)
and our generated manifold shape (b)

(a) (b) (c)

Fig. 17 Different frames during the editing animation. (a)
Anticlockwise rotation. (b) Rest pose. (c) Clockwise rotation

6.2 Skeleton-based composition

From an extracted skeleton, we take each child branch

of a joint node as a child tree (Fig. 18) and store it in a

subtree library. After that, we randomly and recursively

replace a child branch with a child tree from the library
to generate a series of trees (Fig. 19), which all belong to

the same species of the template tree. In the process,

we determine the radius of each newly inserted child

High-quality tree structures modelling using local convolution surface approximation 11

Fig. 18 Child trees generated from the tree given in Fig. 1

Fig. 19 Two new trees composed with the child trees given
in Fig. 18

Fig. 20 The composition procedure of a tree model: a branch
outlined with the red dashed boundary is to be replaced by
the one outlined with the solid blue boundary in the following
step

tree according to the proposed knowledge and heuristic

rules in [57]. The detailed composition procedure is

illustrated in Fig. 20.

With our system, it is easy to model quad-only

tree shapes with excellent edge flow from existing tree

meshes, and intuitive and efficient to compose new trees

by using existing subtrees. In Figs. 21-22, we present

more examples of modelling and composition.

7 Conclusions and future work

In this paper, we have proposed a method of modelling

high quality quad-only tree shapes efficiently based on
the proposed local convolution surface approximation.

Our proposed approach has a number of excellent

features, indicated below. (1) Smooth local convolution

fitting. The adopted convolution surfaces based on
line skeletons and the local approximation maintain

smoothness and natural blending at branches. The

superposition and bulge-free properties of a convo-

lution surface allow us to graft arbitrary branches

naturally. (2) Compact representation with high quality

meshes. Compared to iso-surface extraction such as

Marching tetrahedra, which generates too many low

quality triangles and usually misses small features, our

proposed approach has a more compact representation
and creates high quality quad-only meshes because: a).

they never omit any small features, b). all the meshes

have nice edge flows along the line skeletons of tree

models, c). the subdivided quadrilaterals are uniformly

distributed across the whole tree model, and the edge
lengths of the facets are proportional to the radii

of the tree branches. (3) Interactive performance. As

the most time-consuming subdivision and convolution

fitting processes are implemented through the paral-
lel computing platform and CUDA architecture, our

system is efficient and achieves interactive performance

even on a common desktop PC.

The problem of self-intersections has not been tack-

led in this paper. The advanced technique developed
in [5] can be introduced to solve this problem. It

will be our future work. In addition, more knowledge

and heuristic-based modelling techniques [57,43] will

be used to guide the modelling procedure. Another
efficient subdivision method is to adopt the hardware

tessellation provided only by the most recent graphics

cards, which will be used in future experiments to find

a more suitable way to model quad-only tree models.

Compared to convolution surfaces, homothetic convo-
lution surfaces developed in [58] have advantages of

radius control, non-blurring and non-vanishing details

and scale-invariant blending. These advantages can be

introduced to improve the work given in this paper.
Especially, the advantage of non-blurring and non-

vanishing details can be employed to deal with the large

difference in radii better. We intend to use homothetic

12 Xiaoqiang Zhu et al.

Fig. 21 Two other examples: ulmus and quercus. In the first row of each group, the images show the original tree meshes (the
1st column), the extracted line skeletons (the 2nd column), the created bounding polyhedrons (the 3rd column), the results
after the second subdivision and approximation (the 4th column), and the final rendering images with texture mapping (some
leaves and branchlets are additionally involved) (the 5th column). The images in the 2nd row of each group are the newly
composed trees with the subtrees generated from the one in the 1st row

convolution surfaces for tree structure modelling in our

future work.

Acknowledgements This work was supported by the Na-
tional Natural Science Foundation of China (Grant Nos.
61272298 and 61373084), Zhejiang Provincial Natural Science
Foundation of China (Grant No. Z1110154), the China 863
program (Grant Nos. 2012AA011503 and 2013AA01A603),
and the Major Science and Technology Innovation Team
(Grant no. 2010R50040).

References

1. Akkouche, S., Galin, E.: Adaptive implicit surface
polygonization using marching triangles. Comput.
Graph. Forum 20(2), 67–80 (2001)

Fig. 22 The modeled quad-only trees in a living quarter

High-quality tree structures modelling using local convolution surface approximation 13

2. Alexe, A., Barthe, L., Cani, M.P., Gaildrat, V.: Shape
modelling by sketching using convolution surfaces. In: In
Pacific Graphics (Short Papers) (2005)

3. Alexe, A., Barthe, L., Gaildrat, V., Cani, M.: A sketch-
based modelling system using convolution surfaces. In:
Technical Report IRIT - 2005-17-R

4. Alexe, A., Gaildrat, V., Barthe, L.: Interactive modelling
from sketches using spherical implicit functions. In:
Proceedings of the 3rd international conference on
Computer graphics, virtual reality, visualisation and
interaction in Africa, AFRIGRAPH ’04, pp. 25–34. ACM,
New York, NY, USA (2004)

5. Angelidis, A., Jepp, P., Cani, M.P.: Implicit modelling
with skeleton curves: Controlled blending in contact
situations. In: Proceedings of the Shape Modeling
International 2002 (SMI’02), SMI ’02, pp. 137–144. IEEE
Computer Society, Washington, DC, USA (2002)

6. Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton
extraction by mesh contraction. In: ACM SIGGRAPH
2008, SIGGRAPH’08, pp. 44:1–44:10. ACM, New York,
NY, USA (2008)

7. Bernhardt, A., Pihuit, A., Cani, M.P., Barthe, L.:
Matisse: painting 2d regions for modeling free-form
shapes. In: EUROGRAPHICS Workshop on Sketch-
Based Interfaces and Modeling, SBIM’08, pp. 57–64.
Eurographics Association, Annecy, France (2008)

8. Bloomenthal, J.: An implicit surface polygonizer. Graph-
ics Gems IV pp. 324–349 (1994)

9. Bloomenthal, J., Shoemake, K.: Convolution surfaces.
Comput. Graph. 25(4), 251–256 (1991)

10. Bottino, A., Nuij, W., Overveld, K.v.: How to shrinkwrap
a sadle-point: an algorithm for the adaptive triangulation
of iso-surfaces with arbitrary topology. Proceedings
Eindhoven Implicit Surfaces Workshop (1996)

11. Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre - fast
skeletonization for imperfect point cloud data of botanic
trees. In: EG Workshop on 3D Object Retrieval, pp. 13–
27 (2009)

12. Bunnell, M.: GPU Gems 2. ch. Adaptive Tessellation
of Subdivision Surfaces with Displacement Mapping.
Addison Wesley Professional, Boston, USA (2005)

13. Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z.:
Point cloud skeletons via laplacian-based contraction.
In: Proc. of IEEE Conf. on Shape Modeling and
Applications, SMI’10, pp. 187–197. IEEE Computer
Society, Washington, DC, USA (2010)

14. Catmull, E., Clark, J.: Recursively generated b-spline
surfaces on arbitrary topological meshes. Comput. Aided
Des. 10(6), 350–355 (1978)

15. Chen, X., Neubert, B., Xu, Y., Deussen, O., Kang, S.:
Sketch-based tree modeling using markov random field.
ACM Trans. Graph. 27(5), 1–9 (2008)

16. Deussen, O., Lintermann, B.: Digital Design of Nature:
Computer Generated Plants and Organs. Springer, New
York, NY, USA (2005)

17. Doo, D., Sabin, M.: Behavior of recursive division
surfaces near extraodinary points. Comput. Aided Des.
10(6), 356–360 (1978)

18. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S.,
Schonherr, S.: On the design of cgal a computational
geometry algorithms library. Software Pract. Exper.
30(11), 1167–1202 (2000)

19. Galbraith, C., Mndermann, L., Wyvill, B.: Implicit
visualization and inverse modeling of growing trees. In:
Comput. Graph. Forum, vol. 23, pp. 351–360 (2004)

20. Gourmel, O., Barthe, L., Cani, M.P., Wyvill, B.,
Bernhardt, A., Paulin, M., Grasberger, H.: A gradient-
based implicit blend. ACM Trans. Graph. 32(2), 12:1–
12:12 (2013)

21. Hart, J.C., Baker, B.: Implicit modeling of tree surfaces.
Implicit Surfaces ’96, pp. 143–152 (1996)

22. Hubert, E.: Convolution surfaces based on polygons for
infinite and compact support kernels. Graph. Models
74(1), 1–13 (2012)

23. Hubert, E., Cani, M.P.: Convolution surfaces based on
polygonal curve skeletons. J. Symb. Comput. 47(6), 680
– 699 (2012)

24. Ji, Z., Liu, L., Wang, Y.: B-mesh: a modeling system for
base meshes of 3d articulated shapes. Comput. Graph.
Forum 29(7), 2169–2178 (2010)

25. Jin, X., Tai, C.: Analytical methods for polynomial
weighted convolution surfaces with various kernels.
Comput. Graph. 26(3), 437–447 (2002)

26. Jin, X., Tai, C.: Convolution surfaces for arcs and
quadratic curves with a varying kernel. Vis. Comput.
18(8), 530–546 (2002)

27. Jin, X., Tai, C., Zhang, H.: Implicit modeling from
polygon soup using convolution. Vis. Comput. 25(3),
279–288 (2009)

28. Kettner, L.:
√

3 subdivision. In: ACM SIGGRAPH 2000,
SIGGRAPH’00, pp. 103–112. ACM, New York, NY, USA
(2000)

29. Lin, J., Jin, X., Wang, C.C.: Fusion of disconnected mesh
components with branching shape. Vis. Comput. 26(6-
8), 1017–1025 (2010)

30. Lindenmayer, A.: Mathematical models for cellular
interactions in development ii. simple and branching
filaments with two-sided inputs. J. Theor. Biol. 18(3),
300–315 (1968)

31. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H.,
El-sana, J.: Automatic reconstruction of tree skeletal
structures from point clouds. In: ACM SIGGRAPH Asia
2010, SIGGRAPH ASIA’10, pp. 151:1–151:8. ACM, New
York, NY, USA (2010)

32. Lluch, J., Viv, R., Monserrat, C.: Modelling tree
structures using a single polygonal mesh. Graph. Models
66(2), 89–101 (2004)

33. Longay, S., Runions, A., Boudon, F., Prusinkiewicz, P.:
Treesketch: interactive procedural modeling of trees on a
tablet. In: Proceedings of the International Symposium
on Sketch-Based Interfaces and Modeling, SBIM ’12,
pp. 107–120. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland (2012)

34. Loop, C.: Smooth subdivision surfaces based on triangles.
Master’s Thesis, Departent of Mathematics, University of
Utah (1987)

35. Loop, C., Schaefer, S., Ni, T., Castano, I.: Approximating
subdivision surfaces with gregory patches for hardware
tesselation. ACM Trans. Graph. 28(5), 1–9 (2009)

36. Maréchal, N., Galin, E., Guérin, E., Akkouche, S.:
Component-based model synthesis for low polygonal
models. In: Proceedings of Graphics Interface 2010,
GI ’10, pp. 217–224. Canadian Information Processing
Society, Toronto, Ont., Canada, Canada (2010)

37. McCormack, J., Sherstyuk, A.: Creating and rendering
convolution surfaces. Comput. Graph. Forum 17(2), 113–
120 (1998)

38. Neubert, B., Franken, T., Deussen, O.: Approximate
image-based tree-modeling using particle flows. ACM
Trans. Graph. 26(3), 88–95 (2007)

14 Xiaoqiang Zhu et al.

39. Okabe, M., Owada, S., Igarashi, T.: Ineractive design
of botanical trees using freehand sketches and example-
based editing. Comput. Graph. Forum 24(3), 487–496
(2005)

40. Overveld, K.v., Wyvill, B.: Shrinkwrap: an efficient
adaptive algorithm for triangulating an iso-surface . Vis.
Comput. 20(6), 362–369 (2004)

41. Palubicki, W., Horel, K., Longay, S., Runions, A., Lane,
B., Mech, R., Prusinkiewicz, P.: Self-organizing tree
models for image synthesis. In: ACM SIGGRAPH 2009,
SIGGRAPH’09, pp. 1–10. ACM, New York, NY, USA
(2009)

42. Patney, A., Ebeida, M.S., Owens, J.D.: Parallel view-
dependent tessellation of catmull-clark subdivision sur-
faces. In: Proceedings of the Conference on High
Performance Graphics 2009, HPG’09, pp. 99–108. ACM,
New York, NY, USA (2009)

43. Pirk, S., Stava, O., Kratt, J., Said, M.A.M., Neubert,
B., Měch, R., Benes, B., Deussen, O.: Plastic trees:
interactive self-adapting botanical tree models. ACM
Trans. Graph. 31(4), 50:1–50:10 (2012)

44. Reche-Martinez, A., Martin, I., Drettakis, G.: Volumetric
reconstruction and interactive rendering of trees from
photographs. ACM Trans. Graph. 23(3), 720–727 (2004)

45. Schmidt, R., Singh, K.: meshmixer: an interface for rapid
mesh composition. In: ACM SIGGRAPH 2010 Talks,
SIGGRAPH’10, pp. 6:1–6:1. ACM, New York, NY, USA
(2010)

46. Schwarz, M., Stamminger, M.: Fast gpu-based adaptive
tessellation with cuda. Comput. Graph. Forum 28(2),
365–374 (2009)

47. Sherstyuk, A.: Kernel functions in convolution surfaces:
a comparative analysis. Vis. Comput. 15(4), 171–182
(1999)

48. Sovakar, A., Kobbelt, L.: Api design for adaptive
subdivision schemes. Comput. Graph. 28(1), 67–72
(2004)

49. Tai, C., Zhang, H., Fong, C.: Prototype modeling
from sketched silhouettes based on convolution surfaces.
Comput. Graph. Forum 23(4), 71–83 (2004)

50. Talton, J.O., Lou, Y., Lesser, S., Duke, J., Mech, R.,
Koltun, V.: Metropolis procedural modeling. ACM
Trans. Graph. 30(2), 11:1–11:14 (2011)

51. Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L.: Single
image tree modeling. ACM Trans. Graph. 27(5), 1–7
(2008)

52. Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.:
Image-based tree modeling. In: ACM SIGGRAPH 2007,
SIGGRAPH’07, pp. 87–93. ACM, New York, NY, USA
(2007)

53. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.P.,
Rohmer, D., Wyvill, B., Gourmel, O., Paulin, M.:
Implicit skinning: real-time skin deformation with
contact modeling. ACM Trans. Graph. 32(4), 125:1–
125:12 (2013)

54. Wither, J., Boudon, F., Cani, M.P., Godin, C.: Structure
from silhouettes: a new paradigm for fast sketch-based
design of trees. Comput. Graph. Forum 28(2), 541–550
(2009)

55. Wyvill, G., McPheeters, C., Wyvill, B.: Data Structure
for Soft Objects. Vis. Comput. 2(4), 227–234 (1986)

56. Xia, J., Garcia, I., He, Y., Xin, S.Q., Patow, G.: Editable
polycube map for gpu-based subdivision surfaces. In:
Symposium on Interactive 3D Graphics and Games 2011,
I3D’11, pp. 151–158. ACM, New York, NY, USA (2011)

57. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-
based modeling of laser-scanned trees. ACM Trans.
Graph. 26(4), 19–31 (2007)

58. Zanni, C., Bernhardt, A., Quiblier, M., Cani,
M.P.: Scale-invariant integral surfaces. Comput.
Graph. Forum DOI 10.1111/cgf.12199. URL
http://dx.doi.org/10.1111/cgf.12199

59. Zhu, X., Guo, X., Jin, X.: Efficient polygonization of tree
trunks modeled by convolution surfaces. SCI. CHINA
Ser. F 56(3), 1–12 (2013)

60. Zhu, X., Jin, X., Liu, S., Zhao, H.: Analytical solutions
for sketch-based convolution surface modeling on the gpu.
Vis. Comput. 28(11), 1115–1125 (2012)

