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Abstract We present an efficient polygonization approach for tree trunks modeled by line skeleton-based

convolution surfaces. A quad-dominated non-convex bounding polyhedron is firstly created along the skeleton,

which is then tetrahedralized and subdivided into the pre-defined resolution. After that, the iso-surface within

each tetrahedron is extracted using marching tetrahedra. Our algorithm can generate polygons with adaptive

edge lengths according to the thickness of the trunk. In addition, we present an efficient CUDA-based parallel

algorithm utilizing the high parallelism of the tetrahedron subdivision, the potential field calculation, and the

iso-surface extraction.
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1 Introduction

Realistic modeling and rendering of plants makes virtual scenes more photo-realistic, which has always

been a hot topic in the computer graphics community. Trees are the most popular adopted plants for

their superior feature of huge size. There is limited bandwidth for people to gather information through

the sense of vision, so observers usually focus on the outline of the structure instead of minor details when

watching a tree. Moreover, the outline of a tree depends on its trunk and branch distribution, which is

the research focus of the paper.

Many methods for tree modeling have been proposed, which can be mainly classified into two cate-

gories: virtual tree modeling [1,2] and reconstruction of real trees [3–6]. Virtual tree modeling has been

developed for decades and it is still being studied and developed. For example, both the grammar-based

procedural modeling in [1] and the sketch-based modeling in [2] fall into the first category. The early

L-system [7] generates trees by repetitive application of a small set of rules to an initial structure to cre-

ate rather complex results. The modeling process can be controlled at a higher level in the more recent

grammar-based modeling method [8]. Although complex trees can be modeled using such approaches

by professionals, it will be too abstract for novices and non-professionals because of the non-intuitive

grammars and rules. Therefore, more and more works on interactive sketch-based tree modeling emerge

∗Corresponding author (email: jin@cad.zju.edu.cn)



Zhu X Q, et al. Sci China Inf Sci March 2013 Vol. 56 032105:2

in recent years [9–11]. The increasing passion for photo-realistic perfection gives an impetus to more and

more researches on reconstruction from real data. One of the most important approaches is image-based

modeling. Reche-Martinez et al. [12] propose an algorithm which purely depends on input images. The

scheme in [3] combines the input image and sketches to reconstruct the 3D trees in the original image.

Similarly, the image-based reconstruction of Tan [13,14] also allows for some user intervenes. With the

recent progress in 3D laser scanning technology, tree reconstruction from point clouds attracts more and

more attention. In [5,6], the trunks and branches are firstly reconstructed from point clouds before adding

the leaves. Bucksch et al. [15,16] firstly group scanned point clouds into clusters, and then link them

together with adjacent ones to produce the final skeletons. Since skeleton is an excellent abstract of a

shape and it is easy and convenient to edit, our algorithm is based on the skeleton-based implicit surfaces.

The adopted skeletons of tree trunks can be extracted from point clouds and polygonal meshes (see, for

example, [5,6,17,18]).

Trees have branches and line skeletons [19], so we represent them using convolution surface [20] because

of its advantages of compact skeleton representation, smooth surface, shape suggestion, superposition, and

well-blending. RBF-based implicit surface can also express shapes with complex topology [21]. However,

it is not easy to control the RBF-based method compared with the skeleton-based convolution surface.

A convolution surface is an iso-surface in a scalar field defined by convolving a skeleton with a potential

kernel function. Theoretically, any geometric primitives can be used as skeletons to produce convolution

surfaces. However, the existence of analytical solutions for convolution surfaces depends on both the

skeleton primitives and the kernel functions. Closed-form solutions exist only for limited skeletons such

as points, line segments, triangles, arcs, and quadratic spline curves [22]. Although complex skeletons can

be utilized to create rich convolution surfaces [23–29], line skeletons are preferred because of its efficient

computation and simple editing, which fits our tree modeling requirement.

Convolution surface is a commonly-used implicit surfaces. Its prevalent rendering method is to ex-

tract the polygonal iso-surface and then to render the resulting polygon mesh by making use of the

hardware support for fast polygon rendering. Extraction of the iso-surface has been extensively studied.

In marching cubes algorithm [30], a 3D space is firstly made partitioned into sub-hexahedra, and then

triangular iso-surfaces are extracted according to an iso-surface threshold and the potential field values

at the hexahedral vertices. With the development of GPU, parallel marching cubes algorithms have been

developed.1) However, the extracted mesh cannot be guaranteed to be topologically consistent with the

original iso-surface, which may result in ambiguity in some hexahedra. One reason for that is that the

partition space in marching cubes must be a hexahedral structure. As a substitute, marching tetrahe-

dra [31,32] can overcome above-mentioned drawbacks. Any shape can be decomposed into tetrahedra

which are the most fundamental voxels. No topological ambiguities exist within a tetrahedron. Therefore,

we take tetrahedra as the sampling structure for the iso-surface extraction. A challenging task is how to

create adaptive voxel sizes according to the thickness of trunks so that large triangles are extracted for

thick trunks and small triangles are produced for thin parts. Although some adaptive algorithms have

been developed [33–35], most of them have to partition the space adaptively. As a result, they suffer from

complex topological relationship between different levels of resolution, which will bring about troubles

for parallel computation on the GPU. In this paper, a non-convex bounding polyhedron based on the

skeletons of tree trunks is created whose size will vary adaptively with the thickness of trunks. The sizes

of the tetrahedralized and subdivided tetrahedra are also self-adaptive. Therefore, our approach avoids

space partition and can generate tetrahedra tightly enclosing the object. In the meantime, our approach

significantly reduces both the time and the memory required. Our approach does not need to maintain

the complex topological consistence relationship for adaptive space partition. As a result, our scheme is

well-suited to parallel implementation on the GPU.

Our paper makes the following contributions for the tree modeling: 1) We have developed a new algo-

rithm for the polygonization of tree trunks based on convolution surfaces. A tight bounding polyhedron

is created to limit the extraction space within an effective range. The edge lengths of the bounding

polyhedra and the subdivided tetrahedra are adaptive to the trunk thickness. As a result, our approach

1) http://developer.nvidia.com/cuda-toolkit-32-downloads.
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(a) (b) (c)

Figure 1 (a) A set of point cloud of an input tree model; (b) the extracted skeletons; (c) the thickness information.

neither misses too small twigs nor produces too many triangles for thick trunks. That is, the generated

triangles are dependent on the curvatures of the iso-surface. 2) We have designed a CUDA-based parallel

scheme to fully exploit the parallelism of the tetrahedral subdivision, the potential field value computa-

tion, and the iso-surface extraction. The proposed algorithm is of high performance because the most

time-consuming stages are executed in parallel on the GPU.

The remainder of the paper is organized as follows. After introducing the definition of convolution

surfaces based on tree trunk skeletons in Section 2, we describe both the creation of the skeleton-based

bounding polyhedron and its tetrahedral subdivision in Section 3. In Section 4, the extraction and

the rendering of tree trunk skeleton-based convolution surfaces are presented. Experimental results and

examples are presented in Section 5. Our paper ends with the conclusion section.

2 Tree trunk skeleton-based convolution surfaces

Branch structures such as vasculature and tree trunks can be conveniently represented by skeleton-based

convolution surfaces, which produce smooth surfaces and pleasing blending. Therefore, line skeleton-based

convolution surfaces are employed to create tree trunks in this paper. This section mainly introduces the

generation of tree trunk skeletons and the definition of such trunk skeleton-based convolution surfaces.

2.1 Generation of tree trunk skeleton

Tree trunks have natural line skeletons because of their cylinder-like shapes. Our approach is based on

provided trunk skeletons, which can be acquired through existing approaches, such as: 1) inputs from

user interfaces of modeling packages [36]; 2) skeleton extraction from exiting tree models, including point

cloud-based [5,18] and mesh-based [17] skeleton extraction. The resulting skeletons usually contain radii

(distances between skeletons and trunk surfaces) at skeletal nodes. Figure 1 illustrates the extracted

skeletons and the corresponding radius information.

2.2 Reconstruction using convolution surfaces

2.2.1 Definition of convolution surfaces

A convolution surface is an iso-surface in 3D scalar field defined by convolving a skeleton with a potential

kernel function, which can be mathematically defined as

S =

{
(x, y, z)

∣∣∣∣∣
n∑

i=1

λiFi (x, y, z)− T = 0

}
, (1)

where Fi (x, y, z) is the field function of the ith skeleton segment, λi is the weight of field contribution

from the ith skeleton segment, and T is the threshold value for the convolution surface.
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Let P (x, y, z) be a point in R
3, and g : R3 → R be a function representing a geometric skeleton V :

g (P ) =

{
1, P ∈ V,

0, P /∈ V.
(2)

LetQ be a point in the skeleton V, and let f : R3 → R be a potential function generated by a single point

in V. Then the total field contribution at P from the skeleton V is defined as the convolution of f and g:

F (P ) =

∫
V

g (Q) f (P −Q) dV = (f ⊗ g) (P ). (3)

Therefore, f is usually called the convolution kernel. In this paper, we adopt convolution surfaces to

create tree trunks. The independent calculation can be guaranteed by the superposition property of

convolution surfaces:

f ⊗ (g1 + g2) = (f ⊗ g1) + (f ⊗ g2) , (4)

which indicates that the total field contributions at a point P from multiple skeleton segments can be

simply calculated as the sum of the contribution from each skeleton segment. Therefore, we can focus on

the field calculation for a single skeleton rather than the fusion and branches for multiple skeletons.

There are several choices for convolution kernels f [22]. Here, we adopt the Cauchy kernel developed

in [28]:

f (P −Q) =
1

(1 + s2r2)
2 , (5)

where r = ‖P −Q‖, and s is a control parameter for adjusting the width of the kernel function.

2.2.2 Approximation with convolution surfaces

We use the following notations:

L = {L1, . . . , Ln} are line skeletons;

F ij = FLi (pj) is the field value contributed by the ith skeleton at the jth constraint position;

F i =
[
F i1, . . . , F im

]T
is a vector of field values produced by the ith skeleton at all constraint positions;

F =
[
F 1, . . . ,F n

]
are field values produced by all skeletons at all constraint positions;

T = [T, . . . , T ] is a vector of threshold values for the convolution surfaces.

To solve the convolution surface approximation with given constraint positions {p1, . . . , pm}, the ap-

proach of LS (least squares) in [37,38] is employed for the unknown weights of field contributions from

each skeleton Λ = [λ1, . . . , λn]
T
:

min
Λ�0

(FΛ− T )
T
(FΛ− T ) , (6)

and the NNLS (non-negative least squares) can be iteratively solved to obtain the weight of each line

skeleton.

3 Tetrahedral subdivision of skeletal bounding polyhedron

To reduce the computational time and the occupied space during the polygonization of convolution

surfaces, the extraction space which will be decomposed into voxels for extracting the iso-surface should

be kept as small as possible.

3.1 Skeleton-based bounding polyhedron

From the provided graph-based trunk skeletons and radii, the method in [36] is employed to create a non-

convex bounding polyhedron. During the creation of the bounding polyhedron, the skeletal sphere with

radius R must be within the polyhedron. To reach the goal, the edge length of the cross-section at each

skeletal node should be greater than two times of the skeletal radius (the edge length of the circumscribed



Zhu X Q, et al. Sci China Inf Sci March 2013 Vol. 56 032105:5

(a) (b)

Figure 2 (a) The bounding polyhedron; (b) the embedded skeleton.

(a)                                                                                 (b)

Figure 3 (a) The original tetrahedralized bounding polyhedron; (b) the offset tetrahedrons.

square of the circle with radius R), and we use three times of the radius in our implementation. However,

the process of merging triangles into quadrilaterals described in [36] is avoided in our approach because it

becomes unnecessary for our next tetrahedralization step. The generated bounding polyhedron is shown

in Figure 2. From the figure, it is obvious that the lengths of the polyhedral edges are proportional to

the radii at skeletal nodes.

3.2 Tetrahedral decomposition and subdivision

3.2.1 Tetrahedral decomposition

Several open source libraries for tetrahedral decomposition have been developed such as CGAL (Com-

putational Geometry Algorithms Library),2) NetGen,3) and TetGen.4) In our approach, we employ the

TetGen library because of its efficiency and no new point insertion, which are critical for our use. The

tetrahedralization process is performed on the CPU, and the resulting tetrahedra are transferred into the

GPU for the next parallel subdivision. Figure 3 illustrates the tetrahedralized elements and it shows that

the sizes of the generated tetrahedra are proportional to the radii of the skeletal spheres.

3.2.2 Tetrahedral subdivision

The tetrahedral subdivision step is necessary because the initial tetrahedralized results are too coarse for

the direct iso-surface extraction. The tetrahedral subdivisions involved in NetGen and TegGen are all

2) CGAL. http://www.cgal.org/.
3) NetGen. http://www.hpfem.jku.at/netgen/.
4) TetGen. http://wias-berlin.de/software/tetgen/.
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Figure 4 Schema of the tetrahedral subdivision.

implemented on the CPU, and the parallelization is not taken into consideration. In our approach, we

have designed a parallel solution based on CUDA to exploit the parallelism in the tetrahedral subdivision

process, and the output tetrahedra can be directly employed for the following iso-surface extraction on

the GPU.

Our CUDA-based parallel tetrahedral subdivision can be divided into two steps:

1) Edge point generation. We have designed a kernel function global CalcEdgePoints() which

distributes a thread for each tetrahedral edge to calculate the midpoint of the current edge (generated

vertices M1, . . . ,M6 in Figure 4).

2) Sub-tetrahedra generation. In this phase, the kernel function global SubdivideTetrahedra() dis-

tributes a thread for each tetrahedron to subdivide the current tetrahedron into eight sub-tetrahedra.

Taking tetrahedron V1V2V3V4 in Figure 4 as an example, the first four new sub-tetrahedra V1M1M2M3,

V2M1M4M5, V3M2M4M6, and V4M3M5M6 are produced by assembling the original vertices V1, V2, V3, V4

and their directly connected edge points, respectively. After that, the left central region, which is an oc-

tahedron M1M2M3M5M4M6, will be subdivided into another four sub-tetrahedra based on the shortest

diagonal as the splitter. Let |M1M6| = min {|M1M6|, |M2M5|, |M3M4|}. Then the newly generated sub-

tetrahedra from the octahedron are M2M1M4M6, M2M6M3M1, M5M1M4M6, and M5M6M3M1. Other

cases can be subdivided similarly.

Our experiments show that a three-level subdivision is fine enough. Detailed subdivision results can

be found in Figure 5. It is easy to observe that the sizes of the sub-tetrahedra are still proportional to

the skeletal radii due to the same depth of subdivision for each tetrahedron.

4 Extraction of convolution surfaces

After the tetrahedral subdivision, the following task is to polygonize the convolution surface. The polygon

extraction can be decomposed into two separate stages: 3D scalar field calculation, and triangle extraction

according to the iso-surface threshold value and the potential field values at the tetrahedral vertices.

4.1 3D scalar field computation

Before the iso-surface extraction, the field value at each tetrahedral vertex has to be calculated. To reach

the goal, the skeletal information should be transferred into the GPU. There is a high-speed cache for

texture memory and constant memory for CUDA, so we store skeletal information in texture memory

(CUDA has large texture memory) and store the total skeletal count in constant memory (only small

constant memory in CUDA for storing data) for frequent accesses during the potential field calculation.

Field value calculation usually exhibits prohibitively long computing time on the CPU. Due to the inde-
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(a)                                                     (b)                                                     (c)

Figure 5 Results of the 3rd tetrahedral subdivision (highlighted region in Figure 3(a)). (a) Root; (b) branch; (c) treetop.

pendent field value calculation at each vertex, we employ kernel global CalcFields(), which distributes

a thread responsible for the potential field value computation at each vertex, for the parallel execution.

4.2 Iso-surface extraction and rendering

For the iso-surface extraction with marching tetrahedra, the iso-surface threshold value is also frequently

accessed. Therefore, we store it as a constant variable in video memory. The polygonal iso-surface

generation processes within different tetrahedra are independent and have high parallelism. Similar to

the tetrahedral subdivision, the CUDA-based parallel extraction can be described as follows:

1) Tetrahedral index generation. In the kernel global CalcTetrahedralIndice(), one thread is dis-

patched for each tetrahedron to count the indices of vertices whose fields are larger than the iso-surface

threshold and a 4-bit index nTetIndex is formed, each bit corresponding to a vertex. Then both nTetIndex

and the lookup table triCntTable of triangle counts in marching tetrahedra are utilized to search for the

count of iso-surface triangles within the current tetrahedron.

2) The function cudppScan in the CUDA SDK library cudpp is employed to parallelly compute the

prefix-sum of extracted iso-surface triangle counts nTrisCntPreSum within all tetrahedra, which is essen-

tial for storing extracted triangles in a compact array in parallel.

3) We perform the extraction kernel global ExtractIsoTriangles() to generate a thread for each tetra-

hedron. Each separate execution unit extracts triangles (0, 1 or 2) within the current tetrahedron based

on nTetIndex in 1) and the lookup table triExtractTable of triangle extraction in marching tetrahedra.

After that, the extracted triangles are tightly stored in a pre-allocated global array triArray in video

memory based on the prefix-sum nTrisCntPreSum in 2).

To render the extracted triangle mesh, the interoperability between the resources of CUDA and

OpenGL is applied to improve the rendering efficiency. That is, the extracted iso-surface vertices and

polygonal information by CUDA are stored in VBO (vertex buffer object) of OpenGL, which can be

directly rendered efficiently. The results can be seen in Figure 6.

5 Experimental results and comparisons

The created bounding polyhedron using the method in [36] cannot enclose the whole iso-surface at some

branches because of the branching trends, which produces holes as shown in Figure 7 (a) and (d). In order
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Figure 6 Extracted iso-surfaces.

(a)                                                        (b)                                                        (c)

(d)                                                        (e)                                                        (f)

Auxiliary node
Auxiliary node

Figure 7 Processing of holes at branches. (a)–(c) Holes of iso-surface, the bounding polyhedron and subdivided tetrahedra

at branches; (d)–(f) iso-surface, the bounding polyhedron and subdivided tetrahedra at branches after inserting auxiliary

nodes.

(a)                               (b)                                 (c)                                (d)                               (e)

Figure 8 Eucalyptus. (a) Skeleton; (b) radii; (c) bounding polyhedron; (d) subdivided tetrahedrons; (e) so-surface.

to prevent such holes, we add an auxiliary point at each side of every sub-tree plane (spanned by two

child trees). Let the vector from the branch node to the auxiliary point be vNodeToAux. The direction

of vNodeToAux is defined as the cross product of two child trees and its length can be obtained by

averaging the edge lengths of the child tree skeletal segments. An example of auxiliary point is illustrated

in Figure 7 (b), (e) and (c), (f). Figure 8 shows an iso-surface extraction example from an eucalyptus.
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(a)                                                                              (b)

(c)                                                                              (d)

Figure 9 Comparison between our method and marching tetrahedra. (a) 362,740 triangles are extracted using our

method; (b) 168,166 triangles are extracted using MT; (c) 364,068 triangles are extracted using MT; (d) 381,284 triangles

are extracted using MT.

To evaluate our proposed algorithm, we carry out the comparison between our approach and marching

tetrahedra from [39]. The whole experimental procedure is implemented on a desktop computer equipped

with Intel Q9400 CPU @2.66 GHz with 4 GB of memory, and the GPU of Nvidia GeForce GTX 260

with an 896 MB of dedicated memory. We employ the CUDA-based parallel architecture on the GPU.

Figure 9 illustrates the comparisons for the rhus example shown in Figure 1. The extracted 362,740

triangles are uniformly distributed across the entire tree, instead of too many triangles at thick trunks

(with small curvatures) or too few triangles at thin trunks (with large curvatures). To some extent,

the extracted triangles are curvature-dependent (see Figure 9(a)). On the contrary, for the marching

tetrahedra algorithm [39], if only 168,166 triangles are extracted (with 220× 220× 220 cube resolution,

smaller number of triangles than ours), nice triangles are produced at thick trunks but fracture emerges

at thin trunks because of a too low resolution of cubes to capture thin parts (see Figure 9(b)). If 364,068

triangles are extracted (with 320 × 320 × 320 cube resolution, almost the same number of triangles as

ours), too many triangles are produced at thick trunks and tooth-shaped results are produced at thin

parts (see Figure 9(c)). Even if the cube resolution is increased to 330× 330× 330 (maximum resolution

for our system) and 381,284 triangles are generated (more triangles than ours), the part of small twigs

cannot produce satisfactory results (see Figure 9(d)).

Apart from producing nicer visual effects, our approach also consumes less computational time than

marching tetrahedra. For the polygonization process of tree trunks using convolution surfaces, we can
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Table 1 Results using marching tetrahedra. Abbreviations: CubeRes (cube resolution), CubeVerts (cube vertices),

ExtrTris (extracted triangles), CalcField (field calculation), ExtrIso (iso-surface extraction)

Models CubeRes CubeVerts ExtrTris
Time (s)

CalcField ExtrIso Total

Rhus

220× 220× 220 10,648,000 168,166 5.020 0.128 5.148

320× 320× 320 32,768,000 364,068 14.264 0.411 14.675

330× 330× 330 35,937,000 381,284 14.307 0.429 14.736

Eucalyptus

220× 220× 220 10,648,000 156,216 3.556 0.130 3.686

320× 320× 320 35,937,000 243,496 7.025 0.267 7.292

330× 330× 330 21,952,000 326,968 10.088 0.436 10.524

Table 2 Results using our method. Abbreviations: TetV (tetrahedral vertices), ExtrTris (extracted triangles), BPC

(bounding polyhedral creation on the CPU), Tetz (tetrahedralization on the CPU), TetSub (tetrahedral subdivision),

CalcField (field calculation), ExtrIso (iso-surface extraction)

Models Tetrahedra TetV ExtrTris
Time (s)

BPC Tetz TetSub CalcField ExtrIso Total

Rhus 1,056,768 905,228 362,740 0.349 0.084 0.029 0.310 0.018 0.790

Eucalyptus 747,008 639,841 235,241 0.205 0.056 0.027 0.151 0.014 0.453

(a)                                                                        (b)

Figure 10 Trunks decorated with twigs, leaves and fruits. (a) Rhus; (b) eucalyptus.

see from Tables 1 and 2 that most of the computational time is spent in potential field value calculation

at vertices of cubes or tetrahedra. The computational time is reduced in our method because the num-

bers of subdivided tetrahedra and their vertices are efficiently reduced through the generated bounding

polyhedron. Although our tetrahedral voxelization of bounding polyhedron is performed on the CPU,

it is not the bottleneck of the whole algorithm since the voxelized object is a quite coarse bounding

polyhedron consisting of only a small number of vertices. To sum up, for the same order of magnitude

of the extracted triangles, our approach is more than 10 times faster than marching tetrahedra while

producing meshes with higher quality.

Figure 10 shows photo-realistic trees by adding tiny twigs, leaves and textures to the extracted tree

trunks using our method.

6 Conclusions

The features of convolution surfaces make it good for modeling branching shapes. However, small branch-

lets are usually lost using traditional iso-surface extraction algorithms. Although multi-resolution or

curvature-adaptive iso-surface extraction algorithms partly solve the problem, they need to deal with
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complex topologies, which greatly hinders the parallelism. Considering parallel computation on the GPU

is an excellent solution to speeding up the calculation of convolution surfaces, we have designed a novel

polygonization scheme on the GPU for tree trunks modeled by convolution surfaces. First, a bounding

polyhedron enclosing the whole iso-surface is created based on the skeletons of the tree trunk, and the

TetGen library is employed to tetrahedralize the polyhedron into tetrahedra adaptively according to the

thickness of the trunk. Second, we repeatedly subdivide the tetrahedra into a user-specified depth and

perform the iso-surface extraction within the sub-tetrahedra parallelly on the GPU. As the sizes of sub-

divided tetrahedra are proportional to the trunk radii, the extracted polygonal iso-surfaces have adaptive

edge lengths. Our approach neither misses small twigs nor produces many triangles at thick trunks.

That is, the generated triangles are dependent on the curvatures of the iso-surface. In the meantime, our

approach produces better polygonized meshes. Third, the bottleneck of the polygonization of tree trunks

using convolution surfaces lies in the computation-intensive potential field calculation, as lots of unnec-

essary vertex field computation is efficiently avoided, our approach is more than one order of magnitude

faster than marching tetrahedra.

Although the sizes of triangles are adaptive to the radii of tree trunks, long and narrow triangles will be

produced in our result. This is the limitation of our approach. In the future, we will try to optimize the

triangles on the GPU. Also, our GPU implementation can be further optimized to improve the efficiency

of the presented algorithm.
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